
The South African EA Forum

Twitter: @EAforumSA

#ogza

Follow the EA Forum

on Twitter…

http://opengroup.co.za/ea-forum

Our upcoming

events

The EA Forum is a networking event sponsored by The Open Group in South

Africa. It started in 2004 and is hosted every second month or so, with events

in Durban, Johannesburg and Cape Town. At the EA Forum, industry leaders

share their experiences and knowledge of architecture and related topics.

Real-world case studies highlight how business problems are solved using the

discipline and practice of architecture. The event is also an opportunity for the

architecture community members to network and collaborate.

For more information or to submit your presentation topics please contact

Stuart Macgregor

Subscribe to our
EA FORUM
DATABASE

http://opengroup.us2.list-manage.com/subscribe?u=cbc3c182661dda2e6a616ce51&id=152cfbb674
http://opengroup.co.za/ea-forum
mailto:stuart.macgregor@opengroup.org

Leading the development of open, vendor-neutral IT standards
and certifications

http://opengroup.co.za

https://www.opengroup.org/

http://opengroup.co.za/
https://publications.opengroup.org/togaf-library
https://www.opengroup.org/

At this month’s EA Forum, an old fashioned Electrical Systems Engineer
considers the requirements and methodologies consistent with moving
from a state of Enterprise Alchemy towards an Engineered Enterprise.

Adriaan Vorster has worked in the ICT industry for almost 30 years. He
served as CIO at the University of Johannesburg and subsequently at the
Mvelaserve Group where, in both positions, he was responsible for the
entire ICT domain.

Adriaan is TOGAF 9 certified and holds B.Eng (1989) and M.Eng (1991)
degrees in Electrical and Electronic Engineering from the Rand Afrikaans
University, as well as a postgraduate Certificate in Data Resource
Management (2000) from the University of Washington, Seattle.

From Enterprise Alchemy to Enterprise Engineering

From Enterprise Alchemy
to

Enterprise Engineering:
an old

Electrical Systems Engineer’s opinion

Adriaan Vorster Aug 2019
The Faber Castell 2/83 N Novo Duplex slide rule, considered to be the best and most beautiful slide rule ever.

http://chalkdustmagazine.com/features/slide-rules-early-calculators/

http://chalkdustmagazine.com/features/slide-rules-early-calculators/

Alchemy

• Alchemy is the medieval
forerunner of chemistry,
concerned with the
transmutation of
matter, in particular
attempts to convert
base metals into gold or
find a universal elixir.

http://www.justscience.in/articles/what-is-alchemy/2017/07/22

http://www.justscience.in/articles/what-is-alchemy/2017/07/22

Alchemy in action?

• Alchemy is faith based.

• Relies on a dearth of knowledge.

• Captures the gullible with promises of
symptomatic relief.

• Has a high failure rate.

• Requires recurring application of the
incantation of magical spells and related
sorcery.

• Finds ready acceptance amongst the
desperate, the ignorant and the gullible.

Chris Dunn Illustration/Fine Art: The Alchemist

The danger of Massaging Symptoms

• Symptoms are vexatious
manifestations that are based on
underlying problems.

• Massaging symptoms does very
little or nothing to the underlying
problem.

• But is does provide temporary
relief by suppressing the symptoms
of the underlying problem.

• Enterprise Alchemists are experts
at providing Symptomatic Relief by
massaging symptoms without
addressing the underlying
problems.

Marketing: what you get promised

This is what
you get

Notice that there is no mention of the inability to address the actual problem

Science
• Definition of science

• 1: the state of knowing : knowledge as distinguished from
ignorance or misunderstanding

• 2a: a department of systematised knowledge as an object of study

• b: something (such as a sport or technique) that may be studied or
learned

• 3a: knowledge or a system of knowledge covering general truths or
the operation of general laws especially as obtained and tested
through scientific method

• b: such knowledge or such a system of knowledge concerned with
the physical world and its phenomena

• 4: a system or method reconciling practical ends with scientific laws
Merriam Webster Dictionary

Alchemy was destroyed by
the development of the

Periodic Table of the
Elements

The end of Alchemy

Alchemy was destroyed by
the development of the

Periodic Table of the
Elements

The end of Alchemy

Alchemy was destroyed by
the development of the

Periodic Table of the
Elements

The end of Alchemy

Let us now turn
Lead into Gold!

• This is the cue for the attending Alchemists to fire up their spells and
incantations.

• The scientists amongst you will most probably slap their foreheads in
disbelief.

• You want to transmute [Xe] 4f14 5d10 6s2 6p2 into [Xe] 4f14 5d10 6s1??
• “It would cost more than one quadrillion dollars, US$1015, per ounce to

produce gold by this experiment," Glen Seaborg, Nobel Prize winner on
nuclear transmutation. (That is roughly 7.5 billion times the current gold price)

What is the Periodic Table of the Elements?
• The Periodic Table of the Elements is a CLASSIFICATION SCHEME, based on

a PROFOUND KNOWLEDGE of the PRIMITIVES, the electron structure of
the elements.

• Let us now pull the classical Alchemist trick of
transmuting a post transition metal, lead, element
Pb, into a transition metal gold, element Au.

https://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turned-into-gold/

Electrons per shell*
s=2
p=6

d=10
f=14

https://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turned-into-gold/

Contrasting Alchemy and Science

• Alchemy
• Is faith based

• Relies on spells and incantations

• Variable quality of outcomes

• Yields symptomatic relief

• Quick and easy to apply

• Typically practiced by secret
societies

• High failure rate

• Science
• Is knowledge based

• Requires application of a scientific process

• Repeatable outcomes

• Capable of solving problems

• Requires effort to deliver solutions

• Open to all associations of academics and
knowledge seekers

• Repeatable success

Knowledge destroyed Alchemy

• Let us be very clear.

• A profound knowledge of the primitives, the electron structure of the
elements, destroyed the practice of Alchemy.

• If you do not have the knowledge of your enterprise primitives, if you
do not know how these primitives interact, you are a natural target
for the Enterprise Alchemists.

• The Enterprise Alchemists will, against a financial consideration, cast
their magical spells and incantations over your enterprise.

• A fine, and socially acceptable endeavour, until you require
measurable, sustainable, results.

Lord Kelvin on Knowledge

• “When you can measure what you are speaking about, and express it
in numbers, you know something about it, when you cannot express
it in numbers, your knowledge is of a meagre and unsatisfactory kind;
it may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.”

• From which sprang the well known statement – To measure is to
know!

• But how do you quantify your measurements?

• What are numbers?

What are Numbers?

• Numbers are the primitives of our
measuring systems.

• Numbers represent quantifiable, domain
specific, stationary, reference points.

• If every number represents a stationary,
domain specific reference, it is a datum.

• Hence the numbers required to measure
and represent a situation is the set of
datums, or data!

N => Natural numbers
Z => Integers
Q => Rational numbers
I => Irrational numbers
R => Real numbers
Imaginary numbers
C => Complex numbers

https://en.wikipedia.org/wiki/Number

https://en.wikipedia.org/wiki/Number

Paraphrasing Lord Kelvin
• Set Numbers => Data

• “When you can measure what you are speaking about, and express it
in data, you know something about it, when you cannot express it in
data, your knowledge is of a meagre and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.”

• This implies that you have to determine the quantifiable, domain
specific, stationary, reference points from which you can hang your
enterprise architecture model.

• Let us try and determine our orientation and direction by looking at a
large dataset.

An example
of a large
dataset.

The stars are,
for our

lifetimes,
stationary,

domain
specific

reference
points.

Knowledge:
the ability

to build and
evaluate
the fit of
search

patterns.
Here used
to Identify

the
Southern

Cross.

South

Information:

Data in context,
data that has

responded to a
search pattern.

Using the
Southern Cross
to find South

South

Now that
you have

the
Knowledge
to build the

Search
Pattern, try
to not see

the
Southern

Cross

Watch out for this!

Occasionally, every few
million years, stars are
seen to eat each other.

What tectonic shifts could
invalidate your Enterprise

References?

How is Big Data, AI,
digitalisation and 4IR

impacting you?Last observed neutron star merger, in galaxy NGC 4993, located some 130 million light years
from our own Milky Way, on 17 October 2017, created some 100 earth masses of gold.

Considering Enterprise Architecture

• According to IEEE 42010 architecture represents “The fundamental
organisation of a system, embodied in its components, their
relationships to each other and the environment, and the principles
governing its design and evolution".

• Enterprise Architecture requires you to have a profound knowledge of
the Enterprise components, the primitives.

• We require an Enterprise Periodic Table of the Enterprise Elements.

• A classifications schema, based on a profound knowledge of the
Enterprise primitives.

Getting to the Enterprise Primitives

Definition of the Zachman Framework
• The Zachman Framework™ is a schema - the intersection between two

historical classifications that have been in use for literally thousands of
years.

• The first is the fundamentals of communication found in the primitive
interrogatives: What, How, When, Who, Where, and Why. It is the
integration of answers to these questions that enables the
comprehensive, composite description of complex ideas.

• The second is derived from reification, the transformation of an
abstract idea into an instantiation, that was initially postulated by
ancient Greek philosophers and is labelled in the Zachman
Framework™: Identification, Definition, Representation, Specification,
Configuration and Instantiation.

https://www.zachman.com/about-the-zachman-framework

https://www.zachman.com/about-the-zachman-framework

How will the Zachman Framework help me?

• The Zachman Framework very clearly identifies the Enterprise Architecture domain.

• The use of the six primitive interrogatives provides the required analysis and the
primitive nature of the interrogatives means that there are no natural projections
between these primitives, thus identifying the alignment and integration requirements.

• Mathematically speaking all six of these primitives, the Zachman Framework columns,
are orthogonal to each other.

• Thus the enterprise presents us with having to construct integrated solutions within a six
dimensional hypercube.

• The challenge of Enterprise Architecture is to ensure continual consistency, at every
level, both in the analysis and the reification, across all the columns and all the rows of
the Zachman Framework.

• The Zachman Framework provides the analytical tools, as well as an organising structure,
that allows you to concentrate on specifics without neglecting the contextual
arrangements

Getting to the Enterprise Primitives

• What are Information Systems?

• Information Systems are Business Process Enablers

• An information system allows a competent person, using ICT
resources, at a certain location, at a certain time, to follow a specified
process that will correctly map the business rules to the enterprise
data.

Architecture is about Reification

• A study of architectural styles invariably leads to the
study of the reification of that architecture and the
built environment.

• The study of the outcomes, the built structures.

• Similarly Enterprise Architecture is about the
outcomes, the robust, scalable, secure, fit for
purpose, functioning systems.

• It is not about shelfware, reams and meters of
documentation, that describe aspects of situations
with no evidence of implementation.

Architecture in practice – Lessons from Lego

The Primitives

The Architecture

The Reification

Architecture is about Re-Use

Different
Architectures

describe different
spatial

arrangements of the
same primitives

The same primitives could
be re-used to instantiate

different outcomes.

Different Reifications.
The different spatial arrangement

of the Primitives yield different
outcomes.

The Lego Architecture
Definition of architecture: The fundamental organisation of a system, embodied in its
components, their relationships to each other and the environment, and the principles
governing its design and evolution.

Does the Lego Architecture conform to this definition?

Architecture is about reification – the description of the arrangement and interactions of the
primitives of a not yet existing, complex, artefact. Aimed at communicating the primitives and
the realisation techniques and requirements to the relevant stakeholders in order to
instantiate the outcome.

How does the Lego Architecture succeed in accomplishing this?

Not yet existing Primitives Realisation techniques Instantiation

Responding to the Stakeholders Lament

• A humorous poem, T’was the night before
Implementation* ends with the following
observation:

• "Heh!", the customer exclaimed with a snarl and a
taunt,
"It's just what I asked for, but not what I want!"

• Just what I asked for, but not what I want! is the
perineal stakeholder lament.

• Generally this manifests as a misalignment*
between the business requirements and the
enabling systems.

• The ISO 42010 – 2007 standard provides a very good
methodology to address stakeholder concerns and
generate aligned solutions.

* https://www.kaitaia.com/jokes/Lyrics/Lyrics30.htm

Solution

W
as

te

Progress = what you get

*misalignment, noun, expensive
term used by consultant to explain
why the wrong problem was solved,
a feature of symptomatic solutions

Misalignment

https://www.kaitaia.com/jokes/Lyrics/Lyrics30.htm

ISO 42010 : 2007 Systems and Software Engineering
— Architecture Description

• The ISO 42010 : 2007 Systems and Software Engineering — Architecture
Description standard, provides a structured way of developing Enterprise
Architectures.

• It provides a holistic, integrated means for driving out implicit models and
reaching consensus on the architectural requirements .

• It is very firmly rooted in Engineering design and, as with the Zachman
Framework, emphasise the importance of the analytical phase before the
synthesis of solutions start.

• Thinking precedes doing.

• Understand the problem before you start solving it.
• This is typically not the Enterprise Alchemist approach as their quiver of spells,

incantations and shrink wrapped software solutions is relied upon to invoke miracles
and wonders.

A journey through ISO/IEC/IEEE 42010 - 2007

www. iso-architecture.org/ieee-1471/index.html

Every system has a Goal or
Purpose.

One or more beneficial
outcome(s) that ensure survival

and growth.

It is absolutely essential to
properly define the Goal or

Purpose of the system and to
achieve consensus on the

definition and evaluation criteria
associated with attaining the

Goal or Purpose.

If you aim at nothing, you will hit
it!

TOGAF 9.1 Pocket P 112

Purpose
or

Goal

Environment System of Interest Architecture

Stakeholder
Architecture
Description

Architecture
Rationale

Concern

Architecture
Viewpoint

Model Kind
(Library

viewpoint)

Architecture View

Architecture
Model

Influences

Inhabits

1..*

1..*

1..*

1..*

1..*

1

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1

1

1

1..*

1

1

1

Exhibits

Expresses
Has interest in

Has

Identifies

Frames

Governs

Identifies

Governs

Has

1

1

1

Participates in

Consists of
1

Provides

Used to select

Fulfils 1..*

1

Describes

Has

Supports

Consists of

Participates in

Expressed by

Supported by

Source of

Definition of an Environment
Purpose

or
Goal

Environment System of Interest Architecture

Stakeholder
Architecture
Description

Architecture
Rationale

Concern

Architecture
Viewpoint

Model Kind
(Library

viewpoint)

Architecture View

Architecture
Model

Influences

Inhabits

1..*

1..*

1..*

1..*

1..*

1

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1

1

1

1..*

1

1

1

Exhibits

Expresses
Has interest in

Has

Identifies

Frames

Governs

Identifies

Governs

Has

1

1

1

Participates in

Consists of
1

Provides

Used to select

Fulfils 1..*

1

Describes

Has

Supports

Consists of

Participates in

Expressed by

Supported by

Source of

Every system inhabits one or more
environments.

It is usual to identify at least two
environments.

The External and the Internal
environments.

Interactions across the Environmental
Boundaries will require Appropriate

Protocols.

Most of the system Constraints and
Enablers will be found in the

environments.

Definition of a System

The term “System of Interest" is
used as a placeholder – e.g., it
could refer to an enterprise, a
system of systems, a product
line, a service, a subsystem, or
software.

Systems can be man-made or
natural.

Nothing in the Standard
depends upon a particular
definition of system.

Users of the Standard are free to
employ whatever system
theory they choose.

Definition of a Stakeholder

Stakeholders are individuals,
groups, organizations or
technology holding Concerns
for the System of Interest.

Examples of stakeholders:
client, owner, user, consumer,
designer, maintainer, auditor,
certification authority,
architect, technology.

Definition of a Concern

A Concern is any interest in the system.

The term derives from the phrase
"separation of concerns" as originally
coined by Edger Dijkstra.

Examples of concerns: (system) purpose,
functionality, structure, behaviour, cost,
supportability, safety, interoperability.

Concerns are those measurable aspects
of the system that must perform to the
stakeholder specifications for the system
to be fit for purpose.

Different stakeholders may have different
concerns.

Definition of a Viewpoint
An Architecture Viewpoint is a set of
conventions for constructing, interpreting,
using and analysing one type of Architecture
View.

A Viewpoint includes Model Kinds, viewpoint
languages and notations, modelling methods
and analytic techniques to frame a specific set
of Concerns.

Examples of viewpoints could be: operational,
systems, technical, logical, deployment,
process, and information.

Model Kinds represent visualisation artefacts,
like a Procure to Pay process.

Architecture Viewpoints and Model Kinds are
used to group Stakeholder Concerns

Definition of an Architecture View

An Architecture View expresses
the Architecture of the System
of Interest from the perspective
of one or more Stakeholders.

It is used to address specific
Concerns, using the conventions
established by its Viewpoint.

An Architecture View consists of
one or more Architecture
Models.

Definition of a Model

An Architecture View is comprised of Architecture Models.

Each Model is constructed in accordance with the
conventions established by its Model Kind, typically defined
as part of its governing Architecture Viewpoint.

Models provide a means for sharing details between views
and for the use of multiple notations within a view.

Typical models include Catalogues of items, Matrices which
illustrate interactions and Diagrams

Cool definition of a Model
For any system S
M is a model of S
if M can be used

to answer questions
about S

Definition of an Architecture Description

An Architecture Description is
a work product used to
express the Architecture of
some System Of Interest.

An Architecture Description
describes one possible
Architecture for a System Of
Interest.

An Architecture Description
may take the form of a
document, a set of models, a
model repository, or some
other form (the AD format is
not defined by the Standard)..

Definition of an Architecture Rationale
Purpose

or
Goal

Environment System of Interest Architecture

Stakeholder
Architecture
Description

Architecture
Rationale

Concern

Architecture
Viewpoint

Model Kind
(Library

viewpoint)

Architecture View

Architecture
Model

Influences

Inhabits

1..*

1..*

1..*

1..*

1..*

1

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1

1

1

1..*

1

1

1

Exhibits

Expresses
Has interest in

Has

Identifies

Frames

Governs

Identifies

Governs

Has

1

1

1

Participates in

Consists of
1

Provides

Used to select

Fulfils 1..*

1

Describes

Has

Supports

Consists of

Participates in

Expressed by

Supported by

Source of

The Architecture Rationale
captures the reasons why
certain architectural choices
have been made (such as
viewpoints selected for use,
and architectural decisions).

The Architecture Rationale
provides the audit trail of
decisions and is consistent
with the requirements of
King III, paragraph 5.

Definition of an Architecture All systems have Architectures.

In the Standard, the architecture of a system is
defined as:

“The fundamental organisation of a system,
embodied in its components, their relationships
to each other and the environment, and the
principles governing its design and evolution".

The definition was chosen
(i) to fit the broad range of things noted

above under System: the architecture of
an enterprise, system, system of systems,
... is what is fundamental to it;

(ii) (ii) to emphasize (through use of the
phrase "concepts or properties") that a
system has an architecture even if that
architecture is not written down.

(iii) Notice that the Architecture has been
informed by and has to conform to, the
Goal, Environment and the Stakeholder
Concerns – inherent alignment

Driving out requirements All systems have Architectures.

In the Standard, the architecture of a system is
defined as:

“The fundamental organisation of a system,
embodied in its components, their relationships
to each other and the environment, and the
principles governing its design and evolution".

The definition was chosen
(i) to fit the broad range of things noted

above under System: the architecture of
an enterprise, system, system of systems,
... is what is fundamental to it;

(ii) (ii) to emphasize (through use of the
phrase "concepts or properties") that a
system has an architecture even if that
architecture is not written down.

(iii) Notice that the Architecture has been
informed by and has to conform to, the
Goal, Environment and the Stakeholder
Concerns – inherent alignment

An inherently
aligned

Architecture:
Goal, Environment,
Stakeholder concern

driven.

Benefits of using ISO/IEC/IEEE 42010 - 2007

• A simple, structured approach.

• Well defined, measurable, goals and outcomes.

• Significant Stakeholder involvement.

• Destruction of implicit models.

• Implementable solutions that are grounded in reality.

• Iterative approach allows for trade off decisions and
optimisation.

• Readily adaptable to manage different levels of discussion
throughout the Enterprise

My favourite Architecture Methodology

I really like the TOGAF approach to Architecture
development.

It provides a scalable and repeatable approach
to analysing, synthesizing, realising and
operating Enterprise Architectures.

It is adaptable and technology and terminology
neutral.

It provides guidance on best practice
approaches to real situations and continually
evolves to suit business requirements.

It forms the core of an Architectural Body of
Knowledge that supports the development of
professional Architecture competencies,
certification and recognition.

TOGAF Criticisms
• There are several well publicised comments about the suitability of

the TOGAF approach.

• Svyatoslav Kotusev has written two critiques of the TOGAF approach,
seemingly contending that TOGAF offers a new kind of snake oil to
the Religious Architecture Sect of the Church of the Open Group.

• In contrast Jason Bloomberg’s article “Don’t be a Fool with a Tool”,
provides a more balanced approach to the use of this methodology.

• In my opinion neither of these authors discuss the actual problem
inherent to Enterprise Architecture – the requirement to work with a
six dimensional hypercube.

https://www.bcs.org/content-hub/enterprise-architecture-is-not-togaf/
https://www.bcs.org/content/conWebDoc/55892?changeNav=10130
https://www.forbes.com/sites/jasonbloomberg/2014/08/07/enterprise-architecture-dont-be-a-fool-with-a-tool/#3ba01a427860

https://www.bcs.org/content-hub/enterprise-architecture-is-not-togaf/
https://www.bcs.org/content/conWebDoc/55892?changeNav=10130
https://www.forbes.com/sites/jasonbloomberg/2014/08/07/enterprise-architecture-dont-be-a-fool-with-a-tool/#3ba01a427860

TOGAF Failures – blindly following a recipe

• Preheat the oven to 180°C. Line two 23cm round cake
pans, or one 23x33cm rectangular baking pan, with wax
paper. Grease the paper and the sides of the pan well.

• In a large bowl, sift the dry ingredients together.
• Add the eggs, milk, oil and vanilla essence and beat with

an electric mixer for about two minutes. Add the boiling
water or coffee and mix until combined.

• Pour the batter evenly into the prepared pans and bake
for 30-40 minutes.

• To test if the cake is ready, insert a toothpick into the
middle of the pan. If it comes out clean, the cake is
ready. A single rectangular cake will take slightly longer
to bake than two round layers.

• Slide a knife around the edge of each cake to loosen it
from the pan, turn the pan over onto a metal rack and
peel off the paper.

• Let the cake cool completely before covering with icing.

Methodology

My Failed Chocolate Cake!

Ingredients

• 2 cups flour

• ¾ cups cocoa powder

• 1 ½ tsp baking powder

• 2 tsp baking soda

• pinch of salt

• 1 cup milk

• 1 tsp vanilla essence

• 2 cups sugar

• ½ cup oil

• 1 cup boiling water or hot coffee

• 2 eggs

The Goal

Failed Cake Analysis – blindly doing it by the book
• Total lack of a Technology Architecture

• Lots of assumed knowledge and the context has not been clarified

• No mention that the eggs should be shelled!

• Preheat the oven to 180°C. Line two 23cm round cake pans, or one
23x33cm rectangular baking pan, with wax paper. Grease the paper and
the sides of the pan well.

• In a large bowl, sift the dry ingredients together.
• Add the eggs, milk, oil and vanilla essence and beat with an electric mixer

for about two minutes. Add the boiling water or coffee and mix until
combined.

• Pour the batter evenly into the prepared pans and bake for 30-40 minutes.
• To test if the cake is ready, insert a toothpick into the middle of the pan. If

it comes out clean, the cake is ready. A single rectangular cake will take
slightly longer to bake than two round layers.

• Slide a knife around the edge of each cake to loosen it from the pan, turn
the pan over onto a metal rack and peel off the paper.

• Let the cake cool completely before covering with icing.

How TOGAF would have saved my cake

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

2. Requirements analysis
As is – To Be and Gap identification
Interoperability evaluation
Evaluate against the Zachman framework

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

2. Requirements analysis
As is – To Be and Gap identification
Interoperability evaluation
Evaluate against the Zachman framework

3. Solution synthesis
Consolidation of gap analysis outputs
End to end interoperability verification
End to end resource requirement and schedule
Implementable realisation plan

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

2. Requirements analysis
As is – To Be and Gap identification
Interoperability evaluation
Evaluate against the Zachman framework

3. Solution synthesis
Consolidation of gap analysis outputs
End to end interoperability verification
End to end resource requirement and schedule
Implementable realisation plan

4. Implementation
The mixing of ingredients
Baking of the cake
Quality control

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

2. Requirements analysis
As is – To Be and Gap identification
Interoperability evaluation
Evaluate against the Zachman framework

3. Solution synthesis
Consolidation of gap analysis outputs
End to end interoperability verification
End to end resource requirement and schedule
Implementable realisation plan

4. Implementation
The mixing of ingredients
Baking of the cake
Quality control

5. Operation
Eating of the cake
Quality assessment
Recipe evaluation and
change requests

How TOGAF would have saved my cake
1. Clear statement of intent
Definition of rules and measures
Capability and competency evaluation
Definition and selection of tools and technology
Ability to assimilate several frameworks, like Zachman

2. Requirements analysis
As is – To Be and Gap identification
Interoperability evaluation
Evaluate against the Zachman framework

3. Solution synthesis
Consolidation of gap analysis outputs
End to end interoperability verification
End to end resource requirement and schedule
Implementable realisation plan

4. Implementation
The mixing of ingredients
Baking of the cake
Quality control

5. Operation
Eating of the cake
Quality assessment
Recipe evaluation and
change requests

6. My memory and
conscience
The knowledge database
that allows for critical
evaluation and repeatable
success

The real challenge of Enterprise Architecture

• Enterprise Architecture represents a six
dimensional hypercube.

• Your enterprise has all of the Zachman
Framework models, at all levels, at all
times.

• Your enterprise has a Business Rules
model, a Temporal model, a Data model,
a Technology model, a Process model
and a People model.

• The Enterprise Architect has to ensure
consistency and interoperability amongst
all of these models, at all times.

Interoperability

C
o

n
si

st
en

cy

And just when you have it all done………

• The cover of the excellent book: Data Model Patterns
by David C Hay, data guru, wise man, origami master
and stand up comic, captures the problem with
modelling.

• The dog in the illustration stares at a rectangle of light
on a floor that has been designated MOON.

• We all know that it actually is a filtered, reflected
projection of the light of the sun.

• And, in time, the movement of the celestial bodies will
cause that rectangle of light to shift, invalidating the
MOON designation.

• Similarly our Enterprise Architecture represents a
snapshot in time and requires continual maintenance
to remain current.

• THE REQUIREMENT TO CONTINUALLY MANAGE
CHANGE IS INHERENT TO ENTERPRSE ARCHITECTCURE!

Data Model Patterns: Conventions of Thought: ISBN 0133488624, 9780133488623 Addison-Wesley, 2013

System Types: Open and Closed Systems

• There are two basic types of systems.

• Open Systems, like a tree, can absorb energy, sunlight,
across the System, tree, boundary to build structure,
cellulose, and create order.

• Closed Systems do not have the ability to absorb energy
across their systems boundaries to effect change and
create order.

• The only natural occurring process that happens in Closed
Systems is one where the Energy decreases and the
Entropy, or chaos or disorder or complexity, increases.

• Closed systems require Continual Energy Input, Simply to
Maintain the State of the System.

• Enterprise Architectures represent Closed Systems, they do
not have self healing properties, there are no Architecture
Elves that descend in the dark of night to fix architectural
issues. This is an Enterprise Alchemy myth! Th

e
Si

x
Fa

ke
 E

lv
es

 o
f

En
te

rp
ri

se
 A

lc
h

em
y

th
at

 f
ix

 s
ys

te
m

s
at

 n
ig

h
t. Wie

Woher

Wer

Was

Warum

Wann

E = hυ

The sun
(not to scale)

Open System (Tree)
Leaves are solar
panels.
They eat the energy
from the sun,
sunlight, and use that
to make wood.
We burn the wood
for heat – releasing
the energy of the
sunlight that was
stored in the wood.
Note the presence of
Schrodinger's cat!

E = mc²

Lehman’s Laws of Software Systems Evolution
• Lehman proposed the concept of Embedded, Evolutionary or E-

systems, systems that will continually evolve to suit emerging
requirements.

• An E-program is written to perform some real-world activity; how it
should behave is strongly linked to the environment in which it runs,
and such a program needs to adapt to varying requirements and
circumstances in that environment. (Long before Marketing developed
the term DevOps!!)

• The notion of continual evolution is consistent with the IEEE
Architecture definition: “The fundamental organisation of a system,
embodied in its components, their relationships to each other and the
environment, and the principles governing its design and evolution".

• Law 1: "Continuing Change" — an E-type system must be continually
adapted or it becomes progressively less satisfactory.

• Law 2: "Increasing Complexity" — as an E-type system evolves, its
complexity increases unless work is done to maintain or reduce it.

• Law 2 is a restatement of the Second Law of Thermodynamics

https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/01/lehmans-laws-of-software-evolution-and-the-staged-model/

https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution

Interactions / Complexity
Increased components result

in a non linear increase in
complexity

𝑛
𝑘

=
𝑛!

𝑘! 𝑛 − 𝑘 !

n=5, k=2 n=10, k=2

https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/01/lehmans-laws-of-software-evolution-and-the-staged-model/
https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution

Analysing Lehman’s Second Law

Let us start with a complex, closed, system with initial complexity E and introduce a small change ∆E at some time.

We can expect the change in complexity to be proportional to the initial complexity.

∆E ~ E or ∆E = kE where k is an arbitrary positive proportionality constant yielding the increase in complexity.

Applying differential calculus to the change over time

dE

dt
= kE and rearrange the terms to yield

dE

E
= kdt

Solving this equation yields : ln 𝐸 = 𝑘𝑡 + 𝑏 where b is some constant of integration

This can be rewritten as: 𝐸 = 𝑒(𝑘𝑡+𝑏) from where, at t=0, the initial complexity is given by 𝐸0 = 𝑒𝑏

The equation for the systems complexity is given by

𝐸 = 𝐸0𝑒
𝑘𝑡

This is an exponential curve and the gradient, slope or the rate of change, is given by
dE

dt
= 𝑘𝐸0𝑒

𝑘𝑡

Note that the rate of change at any point of the trajectory is k times higher than the value of the curve at that point.
This results in a non-linear situation that is difficult to estimate without knowing the trajectory.

Lehman’s Second Law Graphic

𝑆ℎ𝑎𝑝𝑒 𝑜𝑓 𝑐𝑢𝑟𝑣𝑒: 𝐸 = 𝐸0𝑒
𝑘𝑡

Rate of change

= 𝑘𝐸0𝑒
𝑘𝑡

where k > 0

Maintainability

• Are systems infinitely maintainable??

• No

• Recall that systems are under continual pressure to change as per Lehman 1.

• Implementing change invariably increases the system complexity as per Lehman 2.

• There is a Limit of Maintainability where the complexity of the system results in
the maintenance burden becoming so high that the system is rendered useless.

• You are fixing things so frequently that users cannot log in!

• And your fixing introduces more complexity that causes the system to fail more
frequently!

• This is the time when you junk the old system and start fresh.

• This is also the real reason behind Windows 95, Windows 98, Windows 2000,
Windows ME, Windows XP, Windows 7, Windows 10

Implications of Lehman’s Laws

• All systems are under constant pressure to change.

• Unless you are very careful, and apply significant work, you will increase the
complexity of the system.

• Complex systems are more prone to failure.

• There is a Limit of Complexity beyond which it is better to replace the systems
than to try and maintain it.

• Systems require constant work, energy, money, simply to maintain the state of
the system.

• Carefully consider the current state of your systems in terms of maintenance
efforts and possible end of life scenarios.

• Use this information to determine the Re-Use, Buy or Build decisions.

Some sleight of hand to think about
• Let us for a moment consider the famous statement of John Zachman: The system is the Enterprise and apply this to

Lehman’s Laws of System Evolution.

• We substitute the term E-type system with the term Enterprise

1. "Continuing Change" — an E-type system must be continually adapted or it
becomes progressively less satisfactory.

2. "Increasing Complexity" — as an E-type system evolves, its complexity increases
unless work is done to maintain or reduce it.

3. "Self Regulation" — E-type system evolution processes are self-regulating with
the distribution of product and process measures close to normal.

4. "Conservation of Organisational Stability (invariant work rate)" — the average
effective global activity rate in an evolving E-type system is invariant over the
product's lifetime.

5. "Conservation of Familiarity" — as an E-type system evolves, all associated with
it, developers, sales personnel and users, for example, must maintain mastery of
its content and behaviour to achieve satisfactory evolution. Excessive growth
diminishes that mastery. Hence the average incremental growth remains
invariant as the system evolves.

6. "Continuing Growth" — the functional content of an E-type system must be
continually increased to maintain user satisfaction over its lifetime.

7. "Declining Quality" — the quality of an E-type system will appear to be declining
unless it is rigorously maintained and adapted to operational environment
changes.

8. "Feedback System" (first stated 1974, formalised as law 1996) — E-type evolution
processes constitute multi-level, multi-loop, multi-agent feedback systems and
must be treated as such to achieve significant improvement over any reasonable
base.

1. "Continuing Change" — an Enterprise must be continually adapted or it becomes
progressively less satisfactory.

2. "Increasing Complexity" — as an Enterprise evolves, its complexity increases
unless work is done to maintain or reduce it.

3. "Self Regulation" — Enterprise evolution processes are self-regulating with the
distribution of product and process measures close to normal.

4. "Conservation of Organisational Stability (invariant work rate)" — the average
effective global activity rate in an evolving Enterprise is invariant over the
Enterprise's lifetime.

5. "Conservation of Familiarity" — as an Enterprise evolves, all associated with it,
developers, sales personnel and users, for example, must maintain mastery of its
content and behaviour to achieve satisfactory evolution. Excessive growth
diminishes that mastery. Hence the average incremental growth remains
invariant as the Enterprise evolves.

6. "Continuing Growth" — the functional content of an Enterprise must be
continually increased to maintain user satisfaction over its lifetime.

7. "Declining Quality" — the quality of an Enterprise will appear to be declining
unless it is rigorously maintained and adapted to operational environment
changes.

8. "Feedback System" (first stated 1974, formalised as law 1996) — Enterprise
evolution processes constitute multi-level, multi-loop, multi-agent feedback
systems and must be treated as such to achieve significant improvement over
any reasonable base.

https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution

https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/01/lehmans-laws-of-software-evolution-and-the-staged-model/

https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution
https://blogs.msdn.microsoft.com/karchworld_identity/2011/04/01/lehmans-laws-of-software-evolution-and-the-staged-model/

Becoming an Enterprise Engineer

• Realise that all the easy solutions to Enterprise Architecture have already
failed.

• Acknowledge that the Enterprise complexity requires working in a six
dimensional hypercube.

• Understand that Enterprise Architecture is a necessary, strategic,
requirement, you are building the Enterprise of Tomorrow.

• Adopt a Thinking Tool, the Zachman Framework, that will enable you to
analyse and manage the complexity of the Enterprise and work with the
Enterprise Primitives.

• Adopt a consistent methodology, like TOGAF, that will allow you to analyse
situations, synthesize solutions and implement robust, durable enterprise
support capabilities.

• Never, ever, suspend Common Sense!

Conclusion: in my opinion…….
• Enterprise Architecture is a complex endeavour that requires the consistent

management of all of the aspects of a six dimensional hypercube.

• The Zachman Framework provides the best thinking tool for the analysis and
reification of Enterprise Architecture.

• The ISO 42010: 2007 standard provides a means for structured conversations that
will drive out implicit models and deliver clear descriptions of architectural
requirements.

• TOGAF provides a suitable methodology for developing Enterprise Architectures.

• Understand Lehman’s Laws, your change efforts could increase complexity,
reducing systems life.

• Enterprise Alchemy is dangerous, typically based on the massaging of symptoms
and provides no lasting cure or relief.

• Enterprise Engineering is knowledge based, requires thinking before doing, and
provides the tools for repeatable successful outcomes.

The significant
problems we face will
not be solved by the
same level of thinking
that created them

Questions?

